14 research outputs found

    The principal independent components of images

    Get PDF
    This paper proposes a new approach for the encoding of images by only a few important components. Classically, this is done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the neural network community. Applied to images, we aim for the most important source patterns with the highest occurrence probability or highest information called principal independent components (PIC). For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that this definition of PIC implements the classical demand of Shannon’s rate distortion theory

    Image encoding by independent principal components

    Get PDF
    The encoding of images by semantic entities is still an unresolved task. This paper proposes the encoding of images by only a few important components or image primitives. Classically, this can be done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the signal processing and neural network community. Using this as pattern primitives we aim for source patterns with the highest occurrence probability or highest information. For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that the Independent Principal Components (IPC) in contrast to the Principal Independent Components (PIC) implement the classical demand of Shannon’s rate distortion theory

    Project SEMACODE : a scale-invariant object recognition system for content-based queries in image databases

    Get PDF
    For the efficient management of large image databases, the automated characterization of images and the usage of that characterization for searching and ordering tasks is highly desirable. The purpose of the project SEMACODE is to combine the still unsolved problem of content-oriented characterization of images with scale-invariant object recognition and modelbased compression methods. To achieve this goal, existing techniques as well as new concepts related to pattern matching, image encoding, and image compression are examined. The resulting methods are integrated in a common framework with the aid of a content-oriented conception. For the application, an image database at the library of the university of Frankfurt/Main (StUB; about 60000 images), the required operations are developed. The search and query interfaces are defined in close cooperation with the StUB project “Digitized Colonial Picture Library”. This report describes the fundamentals and first results of the image encoding and object recognition algorithms developed within the scope of the project

    MASCOT: a mechanism for attention-based scale-invariant object recognition in images

    Get PDF
    The efficient management of large multimedia databases requires the development of new techniques to process, characterize, and search for multimedia objects. Especially in the case of image data, the rapidly growing amount of documents prohibits a manual description of the images’ content. Instead, the automated characterization is highly desirable to support annotation and retrieval of digital images. However, this is a very complex and still unsolved task. To contribute to a solution of this problem, we have developed a mechanism for recognizing objects in images based on the query by example paradigm. Therefore, the most salient image features of an example image representing the searched object are extracted to obtain a scale-invariant object model. The use of this model provides an efficient and robust strategy for recognizing objects in images independently of their size. Further applications of the mechanism are classical recognition tasks such as scene decomposition or object tracking in video sequences

    The principal independent components of images

    No full text
    Classically, encoding of images by only a few, important components is done by the Principal Component Analysis (PCA). Recently, a data analysis tool called Independent Component Analysis (ICA) for the separation of independent influences in signals has found strong interest in the neural network community. This approach has also been applied to images. Whereas the approach assumes continuous source channels mixed up to the same number of channels by a mixing matrix, we assume that images are composed by only a few image primitives. This means that for images we have less sources than pixels. Additionally, in order to reduce unimportant information, we aim only for the most important source patterns with the highest occurrence probabilities or biggest information called „Principal Independent Components (PIC)“. For the example of a synthetic picture composed by characters this idea gives us the most important ones. Nevertheless, for natural images where no a-priori probabilities can be computed this does not lead to an acceptable reproduction error. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that this definition of PIC implements the classical demand of Shannon’s rate distortion theory

    Neuronal networks for sepsis prediction - the MEDAN project

    No full text
    Since the description of sepsis by Schottmüller in 1914, the amount on knowledge available on sepsis and its underlying pathophysiology has substantially increased. Epidemiologic examinations of abdominal septic shock patients show the potential for high risk posed by and the extensive therapy situation in the intensive care unit (ICU) (5). Unfortunately, until now it has not been possible to significantly reduce the mortality rate of septic shock, which is as high as 50-60% worldwide, although PROWESS' results (1) are encouraging. This paper summarizes the main results of the MEDAN project and their medical impacts. Several aspects are already published, see the references. The heterogeneity of patient groups and the variations in therapy strategies is seen as one of the main problems for sepsis trials. In the MEDAN multi-center study of 71 intensive care units in Germany, a group of 382 patients made up exclusively of abdominal septic shock patients who met the consensus criteria for septic shock (3) was analysed. For use within scores or stand-alone experiments variables are often studied as isolated variables, not as a multidimensional whole, e.g. a recent study takes a look at the role thrombocytes play (15). To avoid this limitation, our study compares several established scores (SOFA, APACHE II, SAPS II, MODS) by a multi-dimensional neuronal network analysis. For outcome prediction the data of 382 patients was analysed by using most of the commonly documented vital parameters and doses of medicine (metric variables). Data was collected in German hospitals from 1998 to 2001. The 382 handwritten patient records were transferred to an electronic database giving the amount of 2.5 million data entries. The metric data contained in the database is composed of daily measurements and doses of medicine. We used range and plausibility checks to allow no faulty data in the electronic database. 187 of the 382 patients are deceased (49 %)

    In Situ

    No full text

    Clinical Spectrum of Primary Adrenal Lymphoma: Results of a Multicenter Cohort Study

    Get PDF
    Purpose: We sought to refine the clinical picture of primary adrenal lymphoma (PAL), a rare lymphoid malignancy with predominant adrenal manifestation and risk of adrenal insufficiency. Methods: 97 patients from 14 centers in Europe, Canada and the United States were included in this retrospective analysis between 1994 and 2017. Results: Of 81 patients with imaging data, 19 (23%) had isolated adrenal involvement (iPAL), while 62 (77%) had additional extra-adrenal involvement (PAL+). Among patients who had both CT and PET scans, 18FDG-PET revealed extra-adrenal involvement not detected by CT scan in 9/18 cases (50%). The most common clinical manifestations were B symptoms (55%), fatigue (45%), and abdominal pain (35%). Endocrinological assessment was often inadequate. With a median follow-up of 41.6 months, 3-year progression-free (PFS) and overall (OS) survival rates in the entire cohort were 35.5% and 39.4%, respectively. The hazard ratios of iPAL for PFS and OS were 40.1 (95% CI: 2.63-613.7, p=0.008) and 2.69 (95% CI: 0.61-11.89, p=0.191), respectively. PFS was much shorter in iPAL versus PAL+ (median 4 months vs. not reached, p=0.006), and OS also appeared to be shorter (median 16 months vs. not reached), but the difference did not reach statistical significance (p=0.16). Isolated PAL was more frequent in females (OR=3.81; P=0.01) and less frequently associated with B symptoms (OR= 0.159; p=0.004). Conclusion: We found unexpected heterogeneity in the clinical spectrum of PAL. Further studies are needed to clarify whether clinical distinction between iPAL and PAL+ is corroborated by differences in molecular biology
    corecore